skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Borovich, Michael W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Peripheral nerve injuries (PNIs) have a significant impact on the quality of life for patients suffering from trauma or disease. In injuries with critical nerve gaps, PN regeneration requires tissue scaffolds with appropriate physiological properties that promote cell growth and functions. Hydrogel scaffolds represent a promising platform for engineering soft tissue constructs that meet key physiological requirements. Nonetheless, ongoing innovation remains essential, as current designs continue to fall short of replicating the functional performance of autografts in bridging critical-sized nerve defects. In this study, gelatin methacrylate (gelMA)-based hydrogels are evaluated to fully characterize their pore structure, compressive stiffness, viscoelasticity, and 3D bioprintability. Hyaluronic acid (HA) and single-walled carbon nanotubes (SWCNTs) are explored as gelMA additives to modify viscoelastic and electrically conductive properties, respectively. Finally, Schwann cell (SC) and human umbilical vein endothelial cell (HUVEC) growth and functions are quantified to assess the biocompatibility of the hydrogel composites as materials for nerve scaffold fabrication. It was found that the microstructure and mechanical properties of gelMA-based hydrogels can be precisely controlled by modifying the concentrations of each component. The addition of HA led to altered viscoelastic properties of the cured structures and SWCNTs increased electrical conductivity, with both additives maintaining cytocompatibility while influencing the protein expression of both SCs and HUVECs. These composite hydrogels have potential in PNI regeneration applications. 
    more » « less